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Summar

The possibility of developing new processing strategies for high

temperature intermetallic compounds is being investigated. In particular

rapid solidification followed by controlled heat treatment may provide new

and unusual microstructures of multiphase materials. This report describes

research performed at NIST to develop predictive models for solubility

extension and metastable phase formation of intermetallic compounds and

research to improve the phase diagram modeling of systems involving ordered

phases.

Theory has been developed to predict the formation of disordered form of

intermetallic compounds during rapid solidification. Using a modification of

the Aziz solute trapping theory, solidification velocities required to form,

for example, a BCC phase from the melt when a B2 phase is the stable phase

have been developed. In the present reporting period, this theory has been

extended to the case where a FCC phase replaces a L10 phase.

Experimental research has continued on the intermetallic system, NiAI-

NiTi, using laser surface melting and examination by transmission electron

microscopy. In the NiAI-NiTi system, the equilibrium intermediate Heusler

phase, Ni2 AITi, was suppressed by rapid solidification and extension ot the

composition range of the NiAl and NiTi phases was observed by melt spiniing.

To quantify the solidification rates required for this process, samples have

been prepared by pulsed laser melting where the solidification rate can be

varied between 1-10 m/s. Preliminary experiments show the formation of the

B2 phase at the Ni2 AlTi composition, which under equilibrium processing forms

the L21 structure.

Experimental work on ternary alloys surrounding the composition TiNbAI
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to determine the phases present in arc melted and heat treated samples has

continued. TEM investigations are required to sort out the complex ordering

reactions in this important alloy system. A broad equilibrium composition

range for the B2 phase has been identified at Il00°C and complex low

temperature (-700°C) transitions are being examined.

An evaluation of existing data and a thermodynamic calculation of the

Ti-Al-Ta phase diagram has been initiated using the THERMOCALC code. This

activity was requested at the March 1988 review of the DARPA/ONR Program on

"Development of High Temperature Intermetallics for Structural Aerospace

Applications" at Pratt & Whitney, Florida.

I. Introduction

The development of high temperature materials is closely related to the

formulation of processing strategies for chemically ordered phases. Most

intermetallic compounds including aluminides, carbides, and silicides as well

as high temperature ceramic phases are ordered. However, optimum mechanical

properties are likely to come from intimate dispersions of several phases,

some of which are ordered. These dispersions can be produced by a phase

transformation sequence involving both ordering and phase separation.

beginning with a solid phase of a carefully selected unstable composition

made by rapid solidification.

Recently, significant advances have occurred in the utilization and

understanding of rapid solidification processing of alloys. Factors which

promote refined segregation, solubility extension and metastable phase

formation have been identified. However, much of this research has been

focused towards disordered crystalline phases: i.e., terminal solid

solutions, not ordered intermetallic compounds.
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At the same time, significant advances have been realized in the

thermodynamics and kinetics of order-disorder transitions. The distinction

between first and higher order transitions has been clarified, the kinetics

of ordering reactions and the structure and mobility of APB's have been

determined and reactions that involve fine scale ordering and compositional

separation have been studied.

This research attempts to combine the advances in these areas to develop

new processing strategies for high temperature ordered multiphase materials.

In section II of this report we describe theoretical and experimental

research focused on determining the possibility of extending the solubility

range of ordered phases by rapid solidification. Subsequent heat treatment

of these metastable alloys can form stable high temperature multiphase

mixtures. This research also includes an examination of the state of

nonequilibrium order of rapidly quenched intermetallic compounds.

Section III of this report summarizes research at phase identification

in composition surrounding Ti2 NbAI.

Section IV of this report describes phase diagram activities involving

ordered phases. A preliminary calculation of the ternary diagram Ti7Ta-AI

has been produced.

II. Solubility Extension and Disordering of Intermetallic Compounds by'Rapid

Solidification

(a) Theory of Solute & Disorder Trapping by Rapid Solidification.

A model has been developed to predict the long range order parameier and

composition of a chemically ordered phase as a function of interface

velocity. The details of this model were described in the previous semi-

annual report. The model is an extension of the solute trapping model of
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Aziz and relies on an analysis of the interdiffusion across the liquid solid

interface between a liquid phase and a solid composed of two sublattices.

The model predicts the transition from solidification of a solid phase with

equilibrium long range order parameter and with equilibrium partitioning of

composition at low interface velocity to solidification of a disordered

crystalline solid with the same composition as the liquid at high

solidification velocity.

A broad range of experimental results on rapid solidification of

intermetallic compounds suggests that solute trapping and disorder trapping

do not occur for line compounds under melt spinning conditions. Trapping

seems only to occur for ordered phases in which the ordering is not so

strong; i.e., where the equilibrium composition range is large (-10%). The

general theory was explored and a simple result related to this point has

been obtained. The critical velocity for the trapping of disorder, Vc " i.e.,

the velocity above which only the disordered variant of the intermetallic

compound can form can be estimated from

T
Vc= VD(T - 1)

m
where VD is the ratio of the interface diffusivity to the jump distance (_102

cm/s), Tc is the critical temperature for the order-disorder transition, and

T. is the melting point of the compound. When the compound is ordered up to

its melting point Tc/Tm > 1. One can see that the higher Tc , which relates

directly to the strength of the ordering, the higher the velocity required to

trap disorder. For line compounds Tc >> Tm and thus Vc may be unattainable

in normal rapid solidification methods.

The results of this theory have been calculated for solids which have

first and second order ordering transitions during the current reporting
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period. Discontinuities in both order parameter and solid composition occur

when the growth velocity is increased when the equilibrium ordering reaction

is first order. These results are described in detail in the preprint

enclosed in the appendix.

(b) NiAI-NiTi Alloys

In previous reports experimental research on the microstructure of melt

spun alloys in the NiAl-NiTi system was described. Eutectic alloys of NiAl-

Ni2 TiAI and Ni2TiA1-NiTi solidified as a single B2 phase. However, results

on alloys with composition Ni2 TiAl were not clear. The APB size was

sufficiently coarse that the non-equilibrium solidification product could not

be determined with certainty. In collaboration with Professor Mike Aziz of

Harvard we have performed pico-second pulse melting. This technique produces

solidification rates of 1-5 m/s. Initial results show that extremely fine

L21 domains are produced by this technique suggesting that the solidification

process produced the B2 phase with subsequent solid state ordering to the L21

structure. Future experiments with this method will permit testing of the

theory described in the previous section.

III. B2 and Related Phases in the Ti-Al-Nb System

Titanium aluminides (Ti3Al and TiAI) with -10 at% Nb additions have

received considerable attention as potential low density, high strengti; and

creep resistant materials. However, the phase equilibria in this ternary

system is poorly understood. Because the presence of BCC-based phases in

these alloys seems to play an important role in the deformation, in-depth

studies of the BCC-based phase fields are being conducted. A series of

alloys surrounding the composition Ti2AlNb are being studied by TEM to

determine the structure of phases present in arc cast, melt spun and heat
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treated samples. When complete, these results, combined with those from the

University of Wisconsin by J. Perepezko and Y. A. Chang under DARPA

sponsorship, will be combined with ternary phase diagram calculations

performed under this contract to determine the ternary phase diagrams Ti-Nb-

Al.

(a) Literature Survey

Experimental work focused on ternary equilibria in the BCC field of the

Ti-Al-Nb system is sparce. Strychor, Williams and Soffa (Met. Trans 19A

(1988) 225) have shown that alloys with -25 at% Al and between 7 and 20 at%

Nb which are quenched from 1250°C are single phase B2 with APB's. This

indicates that the BCC to B2 transition for these compositions occurs below

1250'C. Quenched alloys with 0-7 at% Nb are HCP a' martensite. The B2

alloys also contain a tweed structure of ordered w phase. During aging at

400'C for 100 hours, the B2 phase was partially consumed by an ordered W

phase. Evidence for additional ordering of w into a B82 (Zr2Al) phase is

also presented. No DO1 9 phase was observed to form for alloys with greater

than 7 at% Nb.

Banerjee, Gogia, Nandi and Joshi (Acta Met. 36 (1988) 871) have studied

the composition Ti-25 at% AI-12.5 at% Al. Alloys held at 11000 C for 3 hours

and quenched contain a2 (D019 ) and B2 phases. The B2 phase contains no APB's.

This indicates the equilibria at 1100°C is DO19 + B2, not DO1 + BCC.

Furnace cooling of this structure yields microstructures that suggest that

both of the phases transform partially to an orthorhombic O(Cd 3Er) phase with

symmetry Cmcm. Evidence is presented that a2 - a2 + 0 by simultaneous

ordering and spinodal decomposition and that the B2 phase also transforms by

nucleation and growth to the orthorhombic phase. They also infer that the
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orthorhombic phase has a preferred stoichiometry of TizNbAI.

Banerjee, Nandy and Gogia (Scripta Met. 21 (1987) 597) have examined the

site occupancy of the B2 phase which occurs in a two-phase mixture with the

a2 phase in heat treated samples (no temperature given) of Ti-25.6 at% Al-

10.1 at% Nb. Using channeling enhanced microanalysis they determined that

one sublattice was mostly Ti while the other contained the excess Ti and the

Al and Nb atoms. Using site fractions xj, they give

xT 0 Xab .96 0 .04

X-i XAL X b .28 .48 .24

(b) Experimental Procedure

Alloys shown in Table I were prepared by arc melting. In excess of ten

remelts were necessary to homogenize the buttons.

Table 1. Ti-Al-Nb Alloys Under Investigation

Ingot # at% Ti at% AI at% Nb ppm 0 ppm N ppm H

30 50 (51.1) 25 (23.9) 25 (25.0) 500 130 22
01 50 (50.6) 12.5 (12.2) 37.5 (37.2) 500 320 34
02 37.5 (38.1) 25 (24.3) 37.5 (37.6) 290 30 7
03 62.5 (63.5) 25 (24.2) 12.5 (12.3) 520 90 12
04 50 (51.4) 37.5 (36.2) 12.5 (12.4) 630 50 7

Cast structures were homogenized with a 3 hour heat treatment at. 1400°C

in a vacuum-tight furnace under 2/3 atm gettered Argon. It was found

necessary to rest samples on a Y2 03 coated A120 3 substrate to prevent

reaction with Al203. Cooling was performed by lowering the samples out of

the hot zone of the furnace into a lower chamber. The cooling rate was

estimated by visual observation and by measurements of the furnace vendor to

be -400 K/min. Heat treatments at 1100°C were performed after the 1400°C

treatment by lowering the furnace temperature. Equilibration at 1100°C.

occurred in -5 min. Heat treatments at 700°C were performed by sealing
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individual samples from the 1400°C treatment in quartz tubes. Samples were

wrapped in Ta foil and tubes were backfilled with 2/3 atm He.

Chemical analysis was performed on the samples homogenized at 1400°C.

Because these samples were nominally single phase when viewed by optical or

SEM metallography, microprobe analysis with elemental standards yields

reliable analysis of the bulk alloy compositions. The values obtained are

given in parentheses in Table 1. Oxygen, nitrogen and hydrogen analysis was

performed on these samples by a commercial vendor and is also given in Table

1.

(c) Results

The results of microstructural investigation of phase identification to

date are summarized in Table 2. Considerable solid state transformation

occurs during cooling in some samples. Actual phases present are listed

along with the inferred equilibrium at temperature and the decomposition

path. The results combine observations made by optical metallography, x-ray

diffraction and electron microscopy.

Microstructure of Arc Melted Buttons - Optical metallography of the as-

cast buttons revealed dendritic but single phase structures in all samples

except #03. Microsegregation was small (<1%) but the cores of the dendrites

were rich in Nb as judged from backscatter contrast. Observation of grain

boundaries cutting across dendrite arms suggests significant grain coarsening

(up to 300 pm) during solid state cooling. In sample #03, a fine martensitic

plate st'ucture was visible. X-ray diffraction indicated the structure to be

DO1 9 (Ti3 AI).

Microstructure of Samples Heat Treated at 1400°C - Optical metallography

of the samples cooled from 1400°C reveals the absence of dendritic
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microsegregation and very coarse grains (-2 mm). The microstructures appear

essentially featureless with the exception of #03 which is martensitic. TEM

examination of the martensitic sample indicates complete transformation from

the high temperature phase which existed at 1400'C to a DO1 9 martensite. The

other four compositions consist primarily of a B2 or related phase. Although

no APB's were observed, previous research by Banerjee et al. and Strychor et

al. suggest a BCC - B2 ordering occurs -1200°C. We thus infer that the

equilibrium phase at 1400°C is BCC for all five alloys. However, the

possibility exists that for some compositions the B2 is stable at 1400'C.

High temperature x-ray diffraction will be used to answer this point.

Besides the B2 ordering which occurs during cooling, sample #04

completely transforms to ordered w (or possible B82 ). Sample #30 contains

small plates of twinned DO19.

Microstructure of Samples Heat Treated at 1100°C fcr Four Days - The

microstructure of samples #03, #30, and #01 cooled from 1100°C are identical

to those cooled from 1400°C. Oddly the result for #03, that the phase

present at 11000C after 3 hours is B2, directly contradicts the result of

Banerjee et al. who found B2 + DO19 under these conditions. This may be

related to differences in cooling rate.

Sample #02 contained B2 and a phases while sample #04 contained B +

DO19 . The B2 in this alloy #04 was completely transformed to ordered W.

(d) Future Research

Future work will involve an analysis of the phases present at 7000C

after a one month annealing. The calculated ternary phase diagram Ti-Al-Nb

which was presented in the last report will be modified to be consistent with

this new data and other data generated by J. H. Perepezko and Y. A. Chang at
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the University of Wisconsin, Madison, under DARPA sponsorship.

IV. Phase Diagram Modeling

We have undertaken a preliminary calculation of the Ti-Al-Ta ternary

system in response to requests by Ralph Hecht, Pratt-Whitney, Florida, for

use in their DARPA Program "High Temperature Metallics for Structural

Aerospace Applications."

A preliminary calculation of the Ti-Al-Ta ternary phase diagram was

undertaken using the THERMOCALC DATABANK system described by B. Sundman, B.

Jansson and J. 0. Anderson (CALPHAD 9, 2 (1985) pp. 153-190). The stability

ranges were adjusted to match the isothermal section at 1100°C by Sridharan

and Nowotny (Z. Metallkunde 74 (1983) 468).

In the calculations of the binary systems the liquid and elemental

phases were described as sub-regular solutions. The intermetallic compounds

in the Ta-Al and Ti-Al were described with the Wagner-Schottky model, where

intermetallic compounds are considered to consist of different sublattices

allowing substitutional solutions on each of these sublattices. Since the

Wagner-Schottky model is mathematically a special case of the sublattice

model, the parameters of these intermetallic compounds can be easily

transformed to the sublattice model description of the THERMOCALC DATABANK

system. For the present only the a and TaAI3 intermetallics were modeled in

the Ta-Al binary.

For the extrapolation of ternary Ti-Ta-Al system all phases must be

allowed to have ternary ranges of homogeneity, which means for the Wagner-

Schottky phase that they have to be modeled as metastable phases for the two

other binary systems.

As a first approximation the Gibbs energies of formation of the Ta-AL
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compounds in the Ti-At system and the Ti-Al compounds in the Ta-Al system

were assumed to be the same as in the system where these compounds are

stable, for the Ta-Ti system the Gibbs energies of formation were assumed to

be the same as for these compounds consisting only of Ta or Ti, respectively.

In order to prevent these metastable phases from becoming stable in the

binary systems and to adjust the calculated phase diagram to experimental

results at lI00C, the Gibbs free energies of formation of these metastable

phases were adjusted by assuming that the entropies of formation of the

metastable phases have the same magnitude as the stable phases and the

enthalpies of formation of the metastable phases are more positive than those

of the stable phases. The ternary ranges of homogeneity at lI00°C calculated

with these parameters were acceptable except for the hcp and Li0 phase, where

they were too small. This was adjusted by giving the Ta-Al interaction term

of the hcp phase the most negative value possible, without the hcp-phase

becoming stable in the Ta-Al system. For the Li0 -phase ternary interaction

terms were introduced between Al and Ta on the first sublattice and with Ti

on the second one and between Al and Ti on the first sublattice and Ta on the

second one.

The calculated binary diagrams used for the Ti-Ta-Al ternary 'talculation

are shown in Figures 1, 2, and 3. The correct Ti-Al and Ta-Al diagrams are

still subject to debate in some regions and can be modified at a later time.

The results obtained from the calculations with these parameters are

shown in Figures 4, 5, and 6. Ternary phases were omitted at this inftial

stage. Figures 4 and 5 show isothermal sections at 1100, and 1400°C, while

Figure 6 shows the liquidus projection.

Further work on phase diagram modeling in this system must await a more
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precise definition of the measured phase boundaries.

V. Fiscal Status

(1) Amount currently provided for contract program

$150,000 for period February 9, 1987 to September 30, 1987.

$200,000 for period October 1, 1987 to September 30, 1988.

(b) Expenditure and commitment during April 1, 1988 to September 30, 1988

$100,000

(c) Estimated funds required to complete this work

October to December 1988 $50,000

January to March 1989 $50,000

April to June 1989 $50,000

July to September 1989 $50,000

October to December 1989 $50,000
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Figure Captions

Figure 1. Calculated Ti-Al phase diagram used for calculation of Ti-Al-Ta

ternary diagram.

Figure 2. Calculated Ti-Ta phase diagram used for calculation of Ti-Al-Ta

ternary diagram.

Figure 3. Calculated Ta-Al phase diagram used for calculation of Ti-Al-Ta

ternary diagram.

Figure 4. Calculated isothermal section of the Ti-Al-Ta ternary phase

diagram at 100*C omitting ternary phases.

Figure 5. Calculated isothermal section of the Ti-Al-Ta ternary phase

diagram at 1400*C omitting ternary phases.

Figure 6. Calculated liquidus and solidus invariants of the Ti-Al-Ta ternary

phase diagram omitting ternary phases (liquidus invariants have double

arrows).
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A Theory for the Trappinjg of Disorder and Solute in Interneallic
Phases by Rapid Solidification

William J. Boettinger
Metallurgy Division

National Institute for Standards and Technology
(formerly National Bureau of Standards)

Gaithersburg, MD 20899

and

Michael J. Aziz
Division of Applied Sciences

Harvard University
Cambridge, MA 02138

A theory is developed to predict the long range order parameter, composition and

interfacial temperature of a chemically ordered phase as a function of interface velocity

during rapid crystal growth. The theory extends the solute trapping theory of Aziz to a

solid phase consisting of two sublattices. The engulfment of atoms randomly on the two

sublattices by the rapidly moving interface is balanced against the interdiffusion across

the liquid-solid interface which attempts to restore local equilibrium. With increasing

interface velocity the theory predicts a transition from the solidification of a phase with

equilibrium long range order parameter and with equilibrium solute partitioning to the

solidification of a disordered crystalline phase with the same composition as the liquid.

Predictions for various free energy functions for the solid phase suggest that the decrease

of order parameter with increasing interface velocity may be continuous or discontinuous

and that transitions to solute trapping and to disorder trapping can occur at different

growth rates.

1. Introduction

Over the years, considerable attention has been paid to the kinetics of motion of the

interface separating two phases, especially to the kinetics of solidification of a melt.



Recent interest in the rapid solidification processing of alloys and other materials using

transforinatiois far from e(luilibrium has renewed interest in these kinetics. Theories of

nonequilibriumi incorporation of solute into rapidly growing crystals (1-9) are currently

the focus of experimental tests (10,11). An interesting additional possibility occurs for

intermetallic compounds or other crystals with long range chemical order. Rapid growth

can also cause the formation of crystals with nonequilibrium long range order. Because

ordering in the solid state during post-solidification cooling can mask events at the

liquid-solid interface quantitative experiments to measure the state of long-range order of

the solidifying material are difficult to design. However, the observation of solidified

phases with high densities of antiphase domains when the phase is normally ordered to the

melting point is a clear indication that disorder has been trapped by the process of rapid

solidification (12-15).

Kinetic theories for trapping generally fall into two categories: ditfuse interface and

chemical reaction rate theories. Diffuse interface theories (16-17) solve the Cahn-Hilliard

Equation in a moving frame and predict in a formal way that certain kinds of disorder can

be, induced into a growing phase by rapid interface motion. Chernov has developed a

chemical reaction-rate theory that has been applied to both solute trapping during rapid

solidification of disordered solid solutions and disorder trapping during solidification of

stoichiometric compounds (18). Analytic and Monte-Carlo models of solute trapping

based on very similar principles to Chernov's have been developed by others (19-22).

Probabilities are assigned for each species to hop into or out of the crystal based on the

temperature and the chemical (and structural, e.g., location at a kink) environment; the

net hopping rates are summed to yield the growth velocity. In the language of the

thermodynamics of irreversible processes, the flux of each species across the interface is a

function of the conjugate driving force (chemical potential difference across the interface)

2



for that species only, being independent of the driving force for the other species.

According to these models, for the impurity to be incorporated into a hi oh-energy site

(tile wrong sublattice in disorder trapping; any lattice site in solute trapping), it must

actively hop into it.

The main innovation in the approach of Aziz (1) is that if the impurity does nothing

it may end up on a high-energy site by virtue of the formation by its neighbors of a

regular lattice around it. .ence to avoid incorporation onto a high-energy lattice site, an

atom must diffuse away. (For growth of compounds some of the atoms, of course. will by

chance be incorporated onto the right sublattice even if they do no hopping.) Since the

maximum speed of diffusion can be rather slow compared to the speed with which

crystal-melt interfaces have been observed to move (23-25), the atom may be trapped on

a high-energy site by a rapidly moving interface. This implies a strong cross-coupling

between the fluxes and driving forces of the individual species (26). These assumptions

have been shown experimentally to be much more reasonable, at least for solute trapping

during rapid solidification (10-11), than that requiring each atom to actively hop into its

final site in the crystal.

In this paper we develop a chemical reaction rate theory for the kinetics of

crystallization of an ordered phase at an atomically "rough" interface; i.e., there are no

special sites such as ledges or kinks. The interface temperature, composition and order

parameter of the solid will be described as functions of the interface velocity and liquid

composition at the interface. It is the first theory to treat the simultaneous trapping of

solute and disorder. This is carried out by modeling solute trapping of the undesirable

species on each sublattice. The'sm.of the sublattice compositions yields the overall solid

composition; their difference yields the order parameter. First, he conditions for

equilibrium between a liquid and a solid phase consisting of two equivalent sublatt ices are
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developed in a form required for the kinetic theory. Second, the kinetic theory is

presented: and third, numerical results for the growth of solid phases with first and second

order order-disorder transitions are presented.

2. Tlherniodvnaiuics of the Phases at liquilibrium

We assume for simplicity that the solid phase consists of two equivalent sublattices

a an( 0 with no vacancies and that a total free energy function for the solid, GT is a

function of n, the number of moles of component i (i = A,B) on sublattice j (j = a,o).

The constraint of equal number of lattice sites of the two sublattices requires that +

n = n + n0 . One can formally define the chemical potential of component i on the j
B A 13

sublattice as

dT

The conditions for equilibrium in the solid phase are given by

3- LA = l - I,\ [2]

If we assume that the constraint on the number of moles on each sublattice also holds in

the solid at an interface with a liquid phase then one obtains at equilibrium

2 (IA A A )-
IL [3

where it and p1L are the chemical potentials of the liquid phase. As a consequence of [2]

and [3), the conditions

? i L L

B-/A [4 11A

also hold at equilibrium. These conditions must be satisfied at the zero growth velocity

limit of any kinetic theory.

The free energy of the solid phase is usually written on a molar basis, GS , in .termsfreen



of the compositions of A and 1 atoms on the a and 1 sublattices, a x x x1 given

by

,x a xS  + 1
XA ="A + 2
x a S I

B BX+ 2
.A =X - .-2_,

a= S IXB=XB +2[5
13S1

The long range order parameter, i1 is given by
a_ -Xgf = X# f a(6a/ xA  -x 3 [6J

XAXA B B

and the solid compositions, xA, xSB, are given by

"S I(X0A + XA)

xS I (a X0 [7]
B (xB  B)

where clearly, xa+x a , +X# 1, xS + x S = 1. With these definitions of

composition, the molar free energy G i gm en by

GS 1 aa a a + ,3 /1 3 13m = 2/sAXA + BXB + AXA + /t XB " [8]

If G is treated as a function of independent variables xa and xO then

OGSa i= a m [9]
B A  9xB

2 S

2 m [10]
u -u = ---H

Ox1B

and

_( +_ _ = GOG [1 1 ]

+ = + (1 - x1) M.m112

IfB B

If on the other hand independent variables, xSj and q, are used
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WGS doSa Ornl m
III

13 S A 19

In + [III1oB0 A S- (Til
dx13

and

, S OG SA S G - xS Om II
2(A )= m - I1/

do

OG OGI (, GS + (1- x S) --- 7-r M [12l]
(U B  U )= max B

It can now be seen that Eqn. [2] is equivalent to the ordinary condition for equilibrium

order, 0.

3. Thermo(namic Constraint on Solid Composition and Order Parameter During

Crystallization

The solidification process must always involve a decrease in free energy AG. Baker

and Caln (27) have described the domain of possible solid compositions that can form for

various liquid compositions at a given temperature by requiring that AG < 0 where
AG= G S  L S L S [13

= -AXA + LBXB)

which is Eqn. [15] of Ref. 27 in a different form. Eqn. [13] is the basis for the usual

"tangent to curve rule" to graphically show the change in free energy for a given phase

change. Here G! S is evaluated for the composition of the solid phase and L and /L are

evaluated for the composition of the liquid phase. Application of this principle to the

present case will yield domains of possible order parameter and solid composition that can

solidify from various liquid compositions at a given temperature. Any prediction of a

kinetic model must yield values of n, solid composition, temperature for each liquid

composition which will give A.G < 0.
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Figure 1 shows schematically the domain of possible order parameter which can

form at. various temperatures for a congruently melting compound if the liquid

(omposition is equal to the solid composition. These domains as well as the detailed

kinetic results described later in this paper depend on whether tle ordered phase differs

from the disordered phase by a second or first order transition depicted in (a) and (b),

respectively. At the top are shown the free energies of the solid and liquid at three

temperatures. At the equilibrium melting temperature T 1, only one value of j7 is possible.

Below Tl, AG < 0 defines a range of possible r given in the cross hatched region in the

bottom of the figure. Note that only when the T < T3 in (a) or T < T 2 in (b) can a solid

with r= 0 form. In addition to the range of r which may be possible, a range of 4iffuid

composition for each 77 aod -4-eompositioen is also described by the condition AG < 0

(not shown).

4. A Kinetic Model for the Interface

4.1 The Solidification Vehocity-Composition Relation

We treat here the case of steady state continuous growth of an atomically rough

planar liquid-solid interface. Following the work of Aziz (1) for random crystalline solids.

the atomistic interdiffusion flux between adjacent liquid and solid monolayers must have

a specific value related to the growth rate and the compositions of the monolayers in order

to maintain the steady state. For the growth of an ordered phase, the interdiffusion flux

between the liquid and each sublattice must be considered.

To treat interdiffusion between the liquid and solid phase during crystallization we

use redistribution potentials (1B -PA ) as defined by Aziz and Kaplan (2)1; viz.,

'Redistribution potentials can also be written in terms of activity coefficients 7A, 
7B and

free energies of the pure components GA, (1 as (P'B - /A) = GB - GA + RT fn 71B -

7



AB - t/B -A -RT (n xB + RT en xA. [141/ -

Redistribution potentials for the liquid phase, (.uj -pA), and the a and / sublattices of

the solid phase, (I a a) and 1 -A are obtained from a thermodynamic model of

the phases.

We consider a pair of reactions from initial states (of B in an a or 3 site in the solid

adjacent to A in the liquid) over a barrier to final states (where the two atoms have

exchanged positions) as shown in Figure 2. In a reference frame fixed on the crystal

lattice the forward reactions are designated, J +a and J )fl, and the reverse reactions, JD('

and J D/, and will be expressed in exchanges per unit time per unit area of a (or f)

sublattice. We assume the barrier to redistribution remains a constant height QD above

the state (initial or final) with the higher redistribution potential. Although other

assumptions are possible for the definition of the barrier height this choice is consistent

with that used for continuous growth of pure melts (28). Transitions from higher to lower

redistribution potential are written as the product of an attempt frequency with a
QD

Boltzman factor, exp {- RT}" Transitions from a lower to a higher redistribution

potential are written as

,Yexp -4QD + I (;tB - - (/' - /
The state which is higher or lower depends on the values of order parameter and

composition.

Due to the above assumptions regarding the barrier heights it is necessary to

introduce parameters A. (i = a,#J) with

i L L
if (PB- PA) -(L _ A) 0
Ai  <0.[15]Ai = Iif ( Ai -I i 01L_" L, - < 0B A) _(BA

) <0

RT (n -A.
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Thus the interdiffusion fluxes are given by

r-Q + A I(p ) a k
+a =-f'A x0( -xL) exp - [  i T B ]A)
D T RT

-a _ L _ ex p - QD  + (1 B B\)"- A)[ 6
fA XB(1 -X) - -

-A _ f)A L AQ (1 L L
if) ~-.-x (-x ) exp BI B L)I

Dr3-  --. B B IRT.

The parameter f is the fraction of sites at the interface where jumps can occur, A is the

jump distance, and f0 is the atomic volume (assumed the same for A and B). This

assumption regarding the barrier heights is identical to that made by Aziz and Kaplan

(2). It implies that the exchanges are governed by the properties of the interface and not

the bulk solid or liquid phases. One also could have introduced separate QD and Q for

the exchanges from the two sublattices, the consequences of which will be deferred to the

discussion section of this paper.

The net diffusive fluxes, J and JO, are then
D D

=Di/(AfQ)fx0(I - xL )KA a-L (I- x K(I-Aa) 1117]
- x 8( x~)~ (

and J = J+9 - J-#

D ,/(,\Q)[1(l - x)I( A - - q , (1-A,

B~(~)x( x1 13  130( Bj)f 1 18
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where

- - L 1-1Xp ,I -I / - 'A) Ij

-(k l{'
K13 =exp / T L 19

and

fvA 2 exp [-tU- 120)

which is called the interface diffusivity.

In order to maintain steady state conditions at the growing interface a mass balance

must be satisfied. In order to extract a simple model for the present we will assume that

interdiffusion in the liquid is fast enough to prevent lateral composition variations in the

first liquid monolayer and that interdiffusion in the solid is slow enough that lateral

exchanges (ordering) in the first solid monolayer do not occur. In this case mass balance

requires that
a =V L~x3

JD =(xB-x)
D1 VL XB ) [21]D -, iLB B)

where V is the interface velocity. Equating expressions for the net diffusive fluxes we

obtain

B a=V-

S L )KA/3_xL(I xK(I -A/3) = V (xLx )  [221
x( XB)/ B V- B B)

where VD = Di/A.

One may choose to solve these equations for a given V and x in order to find the

compositions of the a and #3 sublattices. This would yield the average solid composition

and the long range order parameter at the interface. For this purpose we require the

10



redistribution potentials which depend on temperature and the various compositions

throuxgh a specific thermodynamic model of the liquid and solid phases. To determine the

temperature of the interface an additional equation relating the solidification velocity to

the driving force for solidification is required.

4.2 The Solidification Velocity-Temperature Relation

We will assume (28) that the solidification velocity V is related to the free energy

change for crystallization of AG according to

V = VC [I -exp (h-)] [23]

where VC is a crystallization rate parameter. Following the general concept that

crystallization is easier than solute redistribution, VC is assumed greater than VD. In the

case of collision limited growth, VC may approach the speed of sound. If diffusive jumps

are required for crystallization VC can be approximated by the ratio of the liquid

diffusion coefficient to A, the jump distance. Thus, given thermodynamic potentials for

the phases and kinetic parameters VD and VC, Eqns. [22] and 123) give the order

parameter, liquid composition, and temperature at the interface for any solid composition

and solidification velocity.

5. Choice of Thermodynamic Potentials

The predictions of this model will be examined for phase diagrams having a.
sI

congruently melting ordered phase at xs = 2 Thus the order-disorder temperature of

the solid phase must be chosen to be higher than the congruent melting temperature. The

Sfollowing form of the solid free energy, G rn will also permit the comparison of the

predictions when this order-disorder transition is first-order and second-order:
G cs =GS(I -s ) + G s S
m A _ BX BB
+ S1, {4(l -Xs) + 1,12}

+ Q24  [241
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+ RT {(xs -i) Ion (xS - I) + (xjS +4 ) h) (xS ±11)
S -I I S I S ,+- (I - X13 -. 7) ID (0 - x1 - ?j) + (1- x + 71) (11 (1 - x+

where GA and G B are the free energies of pure solid A and 1 and Ql and Q1 arc

constants. If Q9 = 0 and Q < 0, Eqn. [241 describes a Bragg-Williams phase with near

neighbor interaction Q and ideal entropy. The --dependence of the free energy curve for
S 1

xB = 2 is shown schematically in Figure Ia. The transition between the ordered and

disordered phase is a second order phase transition; i.e., the equilibrium order parameter

goes to zero continuously as temperature is increased. If Q 2 < 0 and Q1 > 12Q9 the ftee

r--dependence of the free energy curve for x = is shown schematically in Figure lb.
XB 22

The transition between ordered and disordered phase is a first order phase transformation;

i.e., the equilibrium order parameter has a discontinuous drop to zero.

For the choice of G $ given in Eqn. [24], Eqns. [9-12] give

a- S- S+ (1 S

+ RT I{hi (xS - 17)- fn (1-xBA + 11)

Ito-p =G G B 2 B -970
BA B A P B+J± 7

+ RT {Cn (x S + 1q)- n (1 -xS - )}, [25]

1 ('4A + ) G l{(xS)2 1 9
+ I~ ~ R T &[} -A3)2_14

1S S12 12

YAB+ 'B B + {tn( ix B) P I -" 2

+( 1RTn t1 [(x=G 1} [26]

and

(pd- 11fly = G S - G + S11 (I - US + 77) + 8l2n 3. [27]
For the liquid phase we will employ a regular solution model with

12



L GL+I 1xL 2 + RT t (I- L
J1A -A B XB)
IL G1 + Q L( I - X) 2 + RT hn xL21

where GA and GL are free energies of pure liquid A and B. [he redistribution potential

is given by

JL _ tL G L GL +QL ( I 2[9

Further we will assume that

GA GA = G -G = S(Tm -T) [301

where S and Tm are the entropy of fusion and melting point of the pure components

(assumed equal). Eqn. 130] will guarantee a phase diagram which is symmetric about

1xB - 2-

6. Approximate Result for Dependence of Order Parameter on Velocity at a Congruent

Melting Maximum

simple expression can be obtained from Eqns. [22] for x L = which will provide

some insight into the numerical results described in Section 7. Both equations are

S Isatisfied if xB = and if the order parameter satisfies

Q + 80~ [(1 --RT = tn [ I + D [311

for 11? 02. Note that two solutions, q = 0 and 7 # 0, exist. For V = 0 this equation gives

the equilibrium order parameter as a function of T for xS = 0.5 which could also have
B

been found using Eqn. [2]. As a kinetic equation for solidification, T represents the

interface temperature which can only be determined using Eqn. [23] in combination with

Eqn. [31]. However, if we consider that the interface temperature may be approximated

2For il - 0, Eqn. [311 is modified due to the Ai factors and the theory predicts the same

behavior for .

13



0by the melting point of the ordered phase Tm' then Eqn. 131], after rearrangement,

1)POIOICl

V , I - + /e) e p 77 [3]
VD 27)RT m

This approximation predicts that qj goes to zero as V. goes to (- 0 1). For the
D 2RT o

case where Q 2 = 0, the critical temperature for the order-disorder transition Tc is equal

to (- ). Therefore the critical value of V- where the long range order parameter goes
D

to zero is given by

T c-- l [311=~0 T
D 77 0 'r l

and hence the critical velocity is high when Tc is high (i.e., when the ordering is strong).

When 2 1 0, the critical velocity follows the same trend but is not so simply estimated.

7. Numerical Results

We will examine in parallel the calculated phase diagram and results of the

non-equilibrium interface theory for two cases with thermodynamic parameters given in

Table I.

Table I. Choice of Thermodynamic Parameters

Tm(K) S/R fQL/R(K) QI/R(K) 0 2/R(K)

Case I 1000K 2 0 -3000 0

Case II 1000K 2 0 -2000 -566.2

7.1 Equilibrium Phase Diagram

Figures 3a and 3b show the equilibrium order parameter, q/e, of the solid as a
14
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S
function ofT for the two cases for xB = 0.5, obtained using Eqn. 121. In 1, the

order-disorder (01)) temperature is 1500 K (- -2-). In 11, the OD temperature is 1583 K

and is obtained by finding the temperature where G for q = 0 is equal to GS for 17 = 1-

The (lashed curve represents states where the ordered phase is metastable whereas the

(lotted curve represents states where the ordered phase is unstable. Cases I and II are

respectively second and first order transitions.

Figures 4a and 4b show half of the phase diagrams for the solid phases only. In

Figure 4a no two-phase field exists between the ordered and disordered phase,

characteristic of the second order transition. The curve is obtained from Eqn. [2] by

letting il - 0. In Figure 4b a two-phase field exists. The boundaries are obtained by

equating the values of I(OLA + PO) for 77 = 0 and q = re obtained from Eqn. [2] and
1 a tB)

similarly the values of (,a +  B

Figures 5a and 5b show the equilibrium diagrams using Eqns. [3] in combination

with Eqn. [2] to generate the liquid-solid equilibrium. In both cases the melting point of

the composition x. ==05 is helow the OD temperature. The diagrams contain "peritectic

reactions," L + 0 -, D; however, in Figure 5a no discontinuity in slope occurs at the

liquidus at the "peritectic temperature" due to the second order nature of the OD

reaction. For case II a metastable liquidus and solidus are shown dashed for the

disordered phase. For case I such curves would represent unstable equilibrium and are

not shown.
&0

7.2 Non-Equilibrium Interface Conditions for Congruently Melting Ordered Phase

In general there are two solutions to Eqns. [22] and [23] for the non-equilibrium

interface conditions: one for 7 = 0 and one for q f 0. The 17 10 solution only exists below

some critical value of V/VD. Different parts of each solution are stable or unstable in the

sense that small fluctuations in the order parameter will lead to large changes in the
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interface conditions. Unstable portions will be shown dotted in the following figures. The

details of this stability analysis will be deferred until the discussion.

ForS = 0.5 Eqns. (221 and [23] are satisfied for x L = 0.5 and values of il and T as
V V C3

a function of -shown in Figures 6 and 7. For these results VD was chosen to be 10
DD

In Figure 6a for case I, the order parameter goes to zero continuously as a critical value of

is reached. In Figure 6b for case I the order parameter exhibits a turning or limit

point at a critical value of "-. If the velocity is increased above the limit point, the
D

order parameter must jump discontinuously to the 7 = 0 solution in case II. In Figure 6b

the branch below the turning point is dotted and represents unstable solutions. At V = 0

this unstable branch corresponds to the thermodynamically unstable equilibrium between

the liquid and solid (see T = T 3 in Figure Ib).

In Figure 7, the interface temperatures for the q = 0, and ;7# 0 solutions are shown.

Again the dotted portions are unstable. For case I, the q = 0 solution is only stable above

the critical velocity. For case 11 the qj = 0 solution is always stable and corresponds to

the solidification of the metastable disordered phase.

Figure 8 shows cross plots of q and T. Points along these curves are parameterized

by V-. Also included in the figure are the equilibrium order parameter, r/e, versus
D

temperature as shown originally in Figure 3.

7.3 Simultaneous Disorder and Solute Trapping

For compositions away from the congruent maximum of the ordered phase, the

possibility of non-equilibrium incorporation of solute (solute trapping) as well as disorder

trapping is possible. Figures 9 and 10 show the order parameter and liquid composition at

Sthe interface as a function of V/VD for x = 0.48 for the two cases. The behavior of the

order parameter is quite similar to that for xS = 0.5. Figure 10 is shown with a
XB
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logarithmic scale for velocity to permit comparison to previous theory (1-2) on solute

trapping of disordered solids. In both cases I and If the composition of the liquid

al)proaches the composition of the solid at high velocity.

Near the velocity where r7 goes to zero in case I or where the turning point occurs in

case II in Figure 9, the liquid compositions shown in Figure 10 have abrupt changes. In

case I the lower curve for the il t 0 solution merges with that for the rj= 0 solution.

Below this merge point the rl = 0 solution is unstable and is shown dotted. In case II, the

liquid composition curve for the 77 = 0 solution is stable for all velocities. The liquid

composition for the 9 j 0 solution exhibits a turning point at the same velocity where 17

has a turning point in Figure 9b. In this case the lower branch is stable and the upper

branch is unstable. Thus for case l1 the theory predicts that with increasing velocity a

jump in liquid composition at the interface occurs when q goes to zero. As shown, the size

of the jump is small but it of course depends on the thermodynamic potentials used.

It is also interesting to note that in case I q goes to zero at velocities where solute

redistribution remains significant while in case II complete disorder trapping occurs at a

velocity where solute trapping is practically complete. Numerical results for other values

of 01 and 22 not described here suggest that this is not a general trend for solid phases

with first and second order transitions.

8. Discussion

The validity of the assumptions regarding complete mixing in the first liquid

monolayer and the absence of lateral atomic rearrangements in the first solid monolayer

are ultimately tied to the values of the interdiffusion coeffici,,nts in the solid (Ds),

interface (Di), and liquid (DL). In general it is reasonable to assume that DS < Di < D U

The present theory(besta piipiesiwhen these differ by orders of magnitude. However, even

if Di approaches D , the assumption of complete mixing in the first liquid monolayer may
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only become suspect if the atom positions of each sublattice stays fixed laterally on the

liquid solid interface during growth. This could happen in some crystallographic

orientations of some crystal structures; e.g., growth of a chenically layered structure

edgewise into the melt. In this case one would expect disorder trapping at lower

solidification rates than predicted by this theory. Relaxation of the assumption regarding

no ordering in the first solid monolayer would increase the state of order at any velocity

over that predicted by the theory. This ordering of the surface layer could be added to

that which occurs during solid state cooling to predict the state of order in a final (cold)

solid. The theory also has assumed that QD = Q  or that the interdiffusion between the

liquid and solid do not depend on the sublattice. This condition can easily be relaxed.

One result of such a change would be that for solidification of a composition at a
congruent melting maximum, xL would not equal xS except at V = 0 and V = o.

xB XBexetaV 0anV
The results of the dependence of r on - may be viewed in the context of

D
bifurcation theory. Bifurcation theory describes the change in stability of solutions near

intersection (bifurcation) points and turning points. The two solutions 9 = 0 and 71 t 0

always intersect at -- 1, which occurs at l)ositive and negative values of V
D 2RT of

m
for case I and II respectively. At this point the stability of the q = 0 solution must

change. By replacing Eqn. [31], which applies only for the steady state, with the time

dependent form of the flux balance, o o obi&% n 5 Xr =- 0,

V-- q- (I -rq) + (1 )exp [+ q 35]V D RT 0

W.4 o,1 - 77>_0,

A the stability of the various solutions can be inspected. If a positive perturbation of q7

mnakes the RI of Eqn. [35] positive then t < 0 and the perturbation decays and that
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portion of the solution is stable. Using this method the 71 = 0 solution can be shown to be

stable only if ,> -1 Similarly the stability of the r7 t 0 solutions can beD 2RT o

inspected. In case 1, the ?I A 0 solution is always stable while the r7 A 0 solution for case 11

must change from stable to unstable at the turning point. The stable branch has negative

slope in the 71 versus V plot.
dT

The slope of the curves in Figure 7, aV are worthy of some discussion. The slope is
A

called the interface kinetic coefficient / and relates a simple measure of the departure

from equilibrium required to cause growth at various rates. It can be seen that the slope

is small near V = 0 and whenever y; = 0. At velocities where 7 is changing, the slope is

much steeper; i.e., the kinetics become more "sluggish." A complex expression for -Vcan

be found for x, = 1 by differentiation of Eq. [23] and [24].

RT 1

Near V = 0 or when q = 0, the kinetic coefficient is - where AS is the plicable

entropy of fusion. When 7 is changed rapidly the kinetic coefficient dependsI oi boh VC  -

, -4iid VD. Thus the growth kinetics are controlled by Vc either when the solid is

disordered or when the solid is ordered at small V. At intermediate V the kinetics are

controlled by a combination of VC and VD when the solid is ordered.

fThe present theory can provide some guidance in selecting intermetalliccompounds

which respond to rapid solidification to produce phases with non-equilibrium composition

or state of order. The former may be useful to provide the supersaturation necessary to

form a controlled scale of precipitation by subsequent heat treatment. Non-equilibrium

order produced by solidification will often be followed by rapid ordering during solid state

cooling. The fine antiphase domains structures produced by this process can provide

unusual starting materials for subsequent heat treatment (30).
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It is im port ant to note that many complex ordered )hases such as or phases bear no

resemblance to simple disordered structures. The elimination of such l)hases by rapid

solidification and replacement by a simpler disordered phase is not an example where this

theory is applicable. Classical concepts of nucleation and growth competition must be

applied to these situations.

Quantitative predictions by this theory require good thermodynamic models for the

phases of interest as well as values for the kinetic parameters Vc and VD. Unfortunately,

measurements of equilibrium order parameter are often not available, especially for

materials of technological interest with high melting points. Thus the data base for

thermodynamic modelling is poor. Additionally functional forms of the thermodynamic

potentials used for ordered phase in many phase diagram evaluations have improper

functional form near q = O. This will severely impact, the predictions of this theory.

Values of VC and \D can only be crudely estimated. Experiments on combined solute

trapping and disorder tral)ing using pulsed laser annealing with the transient

conductance method to measure interface rates may provide insight in these parameters.

An analysis of the rate of ordering during solid state cooling nmust be included to obtain

lie values produced by the interface itself. Two features are amenable to measurement.

l:xtreinely fine antiphase domains should be present if the critical velocity has been

excoded. Also the albrupt behavior of the composition shown in Figoure 10 when Y? goes to

zero may produce unusual inicrostructural features.
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Figure Captions

Fig-ure 1. Schematic representation of the origin of the thermodynamic constraint on q

during non-equilibrium solidification of a congruently melting ordered phase. The

ordered solid phase ffer/from the disordered solid phase by (a) a second order transition
or"
t44 (b) a first order phase transition. Top, solid free energy versus i7 and liquid free

energy varies temperatures T 1, T2 , T 3. T1 is the equilibrium melting point of the

ordered phase, T9 is an arbitrary temperature for (a) and the metastable melting point of

the disordered phase for (b), and T3 is the unstable melting point of the ordered phase.

The condition, GS - GL < 0, defines a range of q as a function of solidification

temperature where solidification is possible at the bottom.

Figure 2. Reaction coordinate diagram for interface redistribution reaction. Initial states:

B on a or /3 site in solid, A in liquid. Final states: A on a or 0 site in solid, B in liquid.

Figure 3. Calculated equilibrium long range order parameter in the solid, 17, as a function

of temperature for xB = 0.5 (a) Case I, order-disorder temperature is 1500 K. (b) Case

II, order-disorder temperature is 1583 K, dashed curve - metastable ordered state, dotted

curve unstable ordered state.

Figure 4. Calculated phase diagram for solid phase only for (a) Case I and (b) Case II.

(Diagram is symmetric about xB = 0.5).

Figure 5. Calculated equilibrium phase diagram for (a) Case I and (b) Case II. In (b) the

dashed curve corresponds to the metastable liquidus and solidus for the disordered phase.

Figure 6. Long range order parameter of the solid at the interface, n, as a function of

Sdimensionless growth velocity, V/VD for the congruently melting compound at x = 0.5.

(a) Case I, (b) Case II. Capital letters designate the common interface conditions in

Figures 6, 7, and S.
V

Figure 7. Interface temperature T as a function of dimensionless growth velocity, VrD for
D
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the congruently melting compound at XS 0.5. (a) Case I, (b) Case 1I. The dashed

cturves correspond to the q = 0 solution.
VFigure S. Cross plot of order parameter and interface temperature parameterized by V-

for (a) Case I and (b) Case II. Also shown are the equilibrium order parameter at the

various temperatures taken from Figure 3.

Figure 9. Long range order parameter of the solid at the interface, q7, as a function of

Sdimensionless growth velocity, V/VD for (a) Case I with xB= .48, and (b) Case II with

SS = 0.48. Capital letters designate common interface conditions in Figures 9 and 10.

Figure 10. Liquid composition at the interface x , as a function of dimensionless growth

velocity V/Vp same cases as Figure 9.
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